Bionic Design of the Surface Morphology of Rubber Bush Covered on Driving Drums
Lin-jing XIAO, Xi-jing WANG, Quan LI
Abstract
Driving drum uses friction force to transfer power in belt conveyor. By means of bionic technology, the surface morphology of driving drum's flexible cladding was researched to increase the frictional traction force in this paper. Taking tree frog and katydid as biological prototypes, the structural features and adhesion mechanisms of their epidermal pad attachment organs were studied. Imitating the shape and structure of the epidermal pads, based on the principle of function bionics, four new surface morphologies of drum’s bush were designed. The behavior of the bionic bush contacting to the belt was simulated with finite element analysis software. The results of contact analysis show that the bionic drum’s bushes can generate embedding and interlocking effect during the contact process. The contact form can be changed from plane or cambered surface contact to meshing contact to enhance the frictional traction of drums. Keywords: Epidermal pad; Surface morphology; Bionic design; Finite element analysis; Friction
Keywords
Epidermal pad; Surface morphology; Bionic design; Finite element analysis; Friction
DOI:
http://dx.doi.org/10.3968/j.ans.1715787020100302.013
DOI (PDF):
http://dx.doi.org/10.3968/g941
Refbacks
- There are currently no refbacks.
Copyright (c)
Share us to:

Reminder
We are currently accepting submissions via email only.
The registration and online submission functions have been disabled.
Please send your manuscripts to [email protected],or [email protected] for consideration. We look forward to receiving your work.
Articles published in Advances in Natural Science are licensed under Creative Commons Attribution 4.0 (CC-BY).
ADVANCES IN NATURAL SCIENCE Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Website: Http://www.cscanada.net; Http://www.cscanada.org
E-mail:[email protected]; [email protected]
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures 
