A Resolvent Algorithm for System of General Mixed Variational Inequalities

Abdellah Bnouhachem, Muhammad Aslam Noor, Zineb Sayl

Abstract


In this paper, we suggest and analyze a new resolvent algorithm for finding the common solutions for a generalized system of relaxed cocoercive mixed variational inequality problems and fixed point of a nonexpansive mapping in Hilbert spaces. We also prove the convergence analysis of the proposed algorithm under some suitable mild conditions. In this respect, our results present a refinement and improvement of the previously known results.

References


[1]Aslam Noor, M., & Inayat Noor, K. (2009). Projection algorithms for solving a system of general variational inequalities. Nonlinear Analysis: Theory, Methods & Applications, 70(7), 2700–2706.

[2] Bnouhachem, A. (2005). A self-adaptive method for solving general mixed variational inequalities. Journal of Mathematical Analysis and Applications, 309(1), 136–150.

[3] Brezis, H. (1973). Operateurs Maximaux Monotone et Semigroupes de Contractions dans les Espace dHilbert. North-Holland, Amsterdam, Holland.

[4] Chang, S., Joseph Lee, H., & Chan, C. (2007). Generalized system for relaxed cocoercive variational inequalities in hilbert spaces. Applied Mathematics Letters, 20(3), 329–334.

[5] He, Z., & Gu, F. (2009). Generalized system for relaxed cocoercive mixed variational inequalities in hilbert spaces. Applied Mathematics and Computation, 214(1), 26–30.

[6] Huang, Z., & Aslam Noor, M. (2007). An explicit projection method for a system of nonlinear variational inequalities with different (γ , r)-cocoercive mappings. Applied Mathematics and Computation, 190(1), 356–361.

[7] Lions, J., & Stampacchia, G. (1967). Variational inequalities. Comm. Pure Appl. Math, 20, 493–512.

[8] Noor (2007-2009). Variational Inequalities and Applications. Lecture Notes, Mathematics Department, COMSATS Institute of information Technology, Islamabad, Pakistan.

[9] Noor, M. A. (2002). Proximal methods for mixed quasivariational inequalities. Journal of optimization theory and applications, 115(2), 453–459.

[10] Noor, M. A. (2003). Mixed quasi variational inequalities. Applied mathematics and computation, 146(2), 553–578.

[11] Noor, M. A. (2004). Fundamentals of mixed quasi variational inequalities. International Journal of Pure and Applied Mathematics, 15(2), 137–258.

[12] Petrot, N. (2010). A resolvent operator technique for approximate solving of generalized system mixed variational inequality and fixed point problems. Applied Mathematics Letters, 23(4), 440–445.

[13] Stampacchia, G. (1964). Formes bilin´eaires coercitives sur les ensembles convexes.(french). CR Acad. Sci. Paris, 258, 4413–4416.

[14] Tr´emoli`eres, R., Lions, J.-L., & Glowinski, R. (1981). Numerical analysis of variational inequalities, volume 8. North Holland.

[15] Verma, R. (2001). Projection methods, algorithms, and a new system of nonlinear variational inequalities. Computers & Mathematics with Applications, 41(7), 1025–1031.

[16] Verma, R. (2004). Generalized system for relaxed cocoercive variational inequalities and projection methods. Journal of Optimization Theory and Applications, 121(1), 203–210.

[17] Verma, R. U. (2005). General convergence analysis for two-step projection methods and applications to variational problems. Applied Mathematics Letters, 18(11), 1286–1292.

[18] Weng, X. (1991). Fixed point iteration for local strictly pseudo-contractive mapping. 113(3), 727– 731.

[19] Yang, H., Zhou, L., & Li, Q. (2010). A parallel projection method for a system of nonlinear variational inequalities. Applied Mathematics and Computation, 217(5), 1971–1975.




DOI: http://dx.doi.org/10.3968/j.ans.1715787020130601.2333

DOI (PDF): http://dx.doi.org/10.3968/g3657

DOI (indexed/included/archived): http://dx.doi.org/10.3968/g4587

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

How to do online submission to another Journal?

If you have already registered in Journal A, then how can you submit another article to Journal B? It takes two steps to make it happen:

1. Register yourself in Journal B as an Author

Find the journal you want to submit to in CATEGORIES, click on “VIEW JOURNAL”, “Online Submissions”, “GO TO LOGIN” and “Edit My Profile”. Check “Author” on the “Edit Profile” page, then “Save”.

2. Submission

Go to “User Home”, and click on “Author” under the name of Journal B. You may start a New Submission by clicking on “CLICK HERE”.

We only use the following emails to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]; [email protected]; [email protected]
[email protected];[email protected]

 Articles published in Advances in Natural Science are licensed under Creative Commons Attribution 4.0 (CC-BY).

 ADVANCES IN NATURAL SCIENCE Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138
Website: Http://www.cscanada.net; Http://www.cscanada.org
E-mail:[email protected]; [email protected]

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures