Neuralized Mouse Embryonic Stem Cells Develop Neural Rosette-Like Structures in Response to Retinoic Acid and Produce Teratomas in the Brains of Syngeneic Mice

Cheryl L. Dunham, Mark D. Kirk

Abstract


Several induction protocols can direct differentiation of mouse embryonic stem cells (ESCs) to become neural cells. The B5 and B6 mouse ESC lines display different growth patterns in vitro, and when grown as adherent cultures, the B6 ESCs proliferated at a significantly lower rate than B5 ESCs. Remarkably, after a neural induction protocol that includes removal of LIF and addition of retinoic acid (RA), mature B6 embryoid bodies (EBs) displayed a unique neural rosette-like morphology. On Day 8 of neural induction, B6 EBs revealed mature neuronal markers localized primarily to cells in the center of the EBs and glial markers expressed both in centrally and peripherally located cells. In contrast to B5 cells, when neuralized Day 8 B6 EB cells were dissociated and transplanted into the left striatum of syngeneic C57BL/6 mouse brains, teratomas formed. In addition, teratomas established from undifferentiated B6 cells grew more rapidly and achieved larger volumes when compared to those produced by Day 8, neuralized B6 EBs. The slow growth rate of B6 cells in vitro may have contributed to incomplete neuralization, formation of neural rosette-like structures, and a propensity to form teratomas.


Keywords


C57BL/6 mouse; Embryoid bodies; Embryonic stem cells; Neural stem cells; Neural induction; Striatum; Teratoma

Full Text:

PDF

References


Abe, K., Niwa, H., Iwase, K., Takiguchi, M., Mori, M., Abé, S. I., …, Yamamura, K. I. (1996). Endoderm-specific gene expression in embryonic stem cells differentiated to embryoid bodies. Exp. Cell Res., 229, 27-34. doi: 10.1006/excr.1996.0340

Alison, M. R., & Islam, S. (2009). Attributes of adult stem cells. J. Pathol, 217, 144-160. doi: 10.1002/path.2498

Auerbach, W., Dunmore, J. H., Fairchild-Huntress, V., Fang, Q., Auerbach, A. B., Huszar, D., & Joyner, A. L. (2000). Establishment and chimera analysis of 129/SvEv- and C57BL/6-derived mouse embryonic stem cell lines. Bio. Techniques, 29, 1024-1028, 1030, 1032.

Bain, G., Kitchens, D., Yao, M., Huettner, J. E., & Gottlieb, D. I. (1995). Embryonic stem cells express neuronal properties in vitro. Dev. Biol., 168, 342-357. doi: 10.1006/dbio.1995.1085

Bazou, D., Kearney, R., Mansergh, F., Bourdon, C., Farrar, J., & Wride, M. (2011). Gene expression analysis of mouse embryonic stem cells following levitation in an ultrasound standing wave trap. Ultrasound Med. Biol., 37, 321-330. doi: 10.1016/j.ultrasmedbio.2010.10.019

Bibel, M., Richter, J., Schrenk, K., Tucker, K. L., Staiger, V., Korte, M, …, Barde, Y. A. (2004). Differentiation of mouse embryonic stem cells into a defined neuronal lineage. Nat. Neurosci., 7, 1003-1009. doi: 10.1038/nn1301

Bjorklund, L. M., Sanchez-Pernaute, R., Chung, S., Andersson, T., Chen, I. Y., McNaught, K. S., …, Isacson, O. (2002). Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA, 99, 2344-2349. doi: 10.1073/pnas.062039699

Brederlau, A., Correia, A. S., Anisimov, S. V., Elmi, M., Paul, G., Roybon, L., …, Li, J. Y. (2006). Transplantation of human embryonic stem cell-derived cells to a rat model of Parkinson’s disease: effect of in vitro differentiation on graft survival and teratoma formation. Stem Cells, 24, 1433-1440. doi: 10.1634/stemcells.2005-0393

Brook, F. A., & Gardner, R. L. (1997). The origin and efficient derivation of embryonic stem cells in the mouse. Proceedings of the National Academy of Sciences of the United States of America, 94, 5709-5712. doi: 10.1073/pnas.94.11.5709

Bryant, C. D., Zhang, N. N., Sokoloff, G., Fanselow, M. S., Ennes, H. S., Palmer, A. A., & McRoberts, J. A. (2008). Behavioral differences among C57BL/6 substrains: Implications for transgenic and knockout studies. J. Neurogenet, 22, 315-331. doi: 10.1080/01677060802357388

Cai, C., & Grabel, L. (2007). Directing the differentiation of embryonic stem cells to neural stem cells. Dev. Dyn., 236, 3255-3266. doi: 10.1002/dvdy.21306

Carpenedo, R. L., Sargent, C. Y., & McDevitt, T. C. (2007). Rotary suspension culture enhances the efficiency, yield, and homogeneity of embryoid body differentiation. Stem Cells, 25, 2224-2234. doi: 10.1634/stemcells.2006-0523

Chambers, S. M., Fasano, C. A., Papapetrou, E. P., Tomishima, M., Sadelain, M., & Studer, L. (2009). Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat. Biotechnol., 27, 275-280. doi: 10.1038/nbt.1529

Chen, X. J., Kovacevic, N., Lobaugh, N. J., Sled, J. G., Henkelman, R. M., & Henderson, J. T. (2006). Neuroanatomical differences between mouse strains as shown by high-resolution 3D MRI. Neuroimage, 29, 99-105. doi: 10.1016/j.neuroimage.2005.07.008

Cheng, J., Dutra, A., Takesono, A., Garrett-Beal, L., & Schwartzberg, P. L. (2004). Improved generation of C57BL/6J mouse embryonic stem cells in a defined serum-free media. Genesis, 39, 100-104. doi: 10.1002/gene.20031

Collins, F. S., Rossant, J., & Wurst, W. (2007). A mouse for all reasons. Cell, 128, 9-13. doi: 10.1016/j.cell.2006.12.018

Cook, M. N., Bolivar, V. J., McFadyen, M. P., & Flaherty, L. (2002). Behavioral differences among 129 substrains: implications for knockout and transgenic mice. Behav. Neurosci., 116, 600-611. doi: 10.1037//0735-7044.116.4.600

Crusio, W. E., Schwegler, H., & Van Abeelen, J. H. (1991). Behavioural and neuroanatomical divergence between two sublines of C57BL/6J inbred mice. Behavioural Brain Research, 42, 93-97. doi: 10.1016/S0166-4328(05)80043-9

Eisenberg, L. M., & Eisenberg, C. A. (2003). Stem cell plasticity, cell fusion, and transdifferentiation. Birth Defects Res C Embryo Today, 69, 209-218. doi: 10.1002/bdrc.10017

Elkabetz, Y., Panagiotakos, G., Al Shamy, G., Socci, N. D., Tabar, V., & Studer, L. (2008). Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage. Genes Dev., 22, 152-165. doi: 10.1101/gad.1616208

Engberg, N., Kahn, M., Petersen, D. R., Hansson, M., & Serup, P. (2010). Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells, 28, 1498-1509. doi: 10.1002/stem.479

Faherty, S., Kane, M. T., & Quinlan, L. R. (2005). Self-renewal and differentiation of mouse embryonic stem cells as measured by Oct 4 gene expression: effects of lif, serum-free medium, retinoic acid, and dbcAMP. In Vitro Cell Dev. Biol. Anim., 41, 356-363. doi: 10.1290/0412078.1

Frisen, J., Johansson, C. B., Lothian, C., & Lendahl, U. (1998). Central nervous system stem cells in the embryo and adult. Cell Mol. Life Sci., 54, 935-945.

Germain, N., Banda, E., & Grabel, L. (2010). Embryonic stem cell neurogenesis and neural specification. J. Cell Biochem., 111, 535-542. doi: 10.1002/jcb.22747

Gertsenstein, M., Nutter, L. M., Reid, T., Pereira, M., Stanford, W. L., Rossant, J., & Nagy, A. (2010). Efficient generation of germ line transmitting chimeras from C57BL/6N ES cells by aggregation with outbred host embryos. PLoS One 5, e11260. doi: 10.1371/journal.pone.0011260

Hughes, E. D., Qu, Y. Y., Genik, S. J., Lyons, R. H., Pacheco, C. D., Lieberman, A. P., & Saunders, T. L. (2007). Genetic variation in C57BL/6 ES cell lines and genetic instability in the Bruce4 C57BL/6 ES cell line. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 18, 549-558. doi: 10.1007/s00335-007-9054-0

Katsetos, C. D., Del Valle, L., Geddes, J. F., Assimakopoulou, M., Legido, A., Boyd J. C., ..., Khalili, K. (2001). Aberrant localization of the neuronal class III beta-tubulin in astrocytomas. Archives of Pathology & Laboratory Medicine, 125, 613-624. doi:10.1043/0003-9985(2001)125<0613:ALOTNC>2.0.CO;2

Kawase, E., Suemori, H., Takahashi, N., Okazaki, K., Hashimoto, K., & Nakatsuji, N. (1994). Strain difference in establishment of mouse embryonic stem (ES) cell lines. The International Journal of Developmental Biology, 38, 385-390.

Keskintepe, L., Norris, K., Pacholczyk, G., Dederscheck, S. M., & Eroglu, A. (2007). Derivation and comparison of C57BL/6 embryonic stem cells to a widely used 129 embryonic stem cell line. Transgenic Research, 16, 751-758. doi: 10.1007/s11248-007-9125-8

Kim, J. B., Greber, B., Arauzo-Bravo, M. J., Meyer, J., Park, K. I., Zaehres, H., & Schöler, H. R. (2009). Direct reprogramming of human neural stem cells by OCT4. Nature, 461, 649-643. doi :10.1038/nature08436

Kim, J. B., Sebastiano, V., Wu, G., Arauzo-Bravo, M. J., Sasse, P., Gentile, L., …, Schöler, H. R. (2009). Oct4-induced pluripotency in adult neural stem cells. Cell, 136, 411-419. doi: 10.1016/j.cell.2009.01.023.

Kispert, A., & Herrmann, B. G. (1994). Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos. Dev. Biol., 161, 179-193. doi: 10.1006/dbio.1994.1019

Kleinsmith, L. J., & Pierce, G. B. Jr. (1964). Multipotentiality of single embryonal carcinoma cells. Cancer Res., 24, 1544-1551.

Lancaster, M. A., Renner, M., Martin, C. A., Wenzel, D., Bicknell, L. S., Hurles, M. E., …, Knoblich, J. A. (2013). Cerebral organoids model human brain development and microcephaly. Nature, 501, 373-379. doi: 10.1038/nature12517

Lawrenz, B., Schiller, H., Willbold, E., Ruediger, M., Muhs, A., & Esser, S. (2004). Highly sensitive biosafety model for stem-cell-derived grafts. Cytotherapy, 6, 212-222. doi:10.1080/14653240410006031

Lazzari, G., Colleoni, S., Giannelli, S. G., Brunetti, D., Colombo, E., Lagutina, I., , Broccoli, V. (2006). Direct derivation of neural rosettes from cloned bovine blastocysts: a model of early neurulation events and neural crest specification in vitro. Stem Cells, 24, 2514-2521. doi: 10.1634/stemcells.2006-0149

Ledermann, B. (2000). Embryonic stem cells and gene targeting. Experimental Physiology, 85, 603-613.

Ledermann, B., & Burki, K. (1991). Establishment of a germ-line competent C57BL/6 embryonic stem cell line. Experimental Cell Research, 197, 254-258. doi: 10.1016/0014-4827(91)90430-3

Lee, S. H., Appleby, V., Jeyapalan, J. N., Palmer, R. D., Nicholson, J. C., Sottile, V, …, Scotting, P. J. (2011). Variable methylation of the imprinted gene, SNRPN, supports a relationship between intracranial germ cell tumours and neural stem cells. J. Neurooncol, 101, 419-428. doi: 10.1007/s11060-010-0275-9

Lee, S. H., Lumelsky, N., Studer, L., Auerbach, J. M., & McKay, R. D. (2000). Efficient generation of midbrain and hindbrain neurons from mouse embryonic stem cells. Nature Biotechnology, 18, 675-679. doi :10.1038/76536

Li, Y., & Tanaka, T. (2011). Self-renewal, pluripotency and tumorigenesis in pluripotent stem cells revisited. In C. S. Atwood (Ed.), Embryonic stem cells—recent advances in pluripotent stem cell-based regenerative medicine: InTech (pp.339-358). doi: 10.5772/15196

Limaye, A., Hall, B., & Kulkarni, A. B. (2009). Manipulation of mouse embryonic stem cells for knockout mouse production. Current Protocols in Cell Biology, 19(13), 11-24. doi: 10.1002/0471143030.cb1913s44

Liu, S., Qu, Y., Stewart, T. J., Howard, M. J., Chakrabortty, S., Holekamp, T. F., McDonald, & J. W. (2000). Embryonic stem cells differentiate into oligodendrocytes and myelinate in culture and after spinal cord transplantation. Proc. Natl. Acad. Sci. USA, 97, 6126-6131. doi: 10.1073/pnas.97.11.6126

Mansergh, F. C., Daly, C. S., Hurley, A. L., Wride, M. A., Hunter, S. M., & Evans, M. J. (2009). Gene expression profiles during early differentiation of mouse embryonic stem cells. BMC Dev. Biol., 9, 5. doi: 10.1186/1471-213X-9-5

Martin, G. R. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences of the United States of America, 78, 7634-7638. doi: 10.1073/pnas.78.12.7634

Meyer, J. S., Katz, M. L., Maruniak, J. A., & Kirk, M. D. (2004). Neural differentiation of mouse embryonic stem cells in vitro and after transplantation into eyes of mutant mice with rapid retinal degeneration. Brain Res., 1014, 131-144. doi: 10.1016/j.brainres.2004.04.019

Meyer, J. S., Katz, M. L., Maruniak, J. A., & Kirk, M. D. (2006). Embryonic stem cell-derived neural progenitors incorporate into degenerating retina and enhance survival of host photoreceptors. Stem Cells, 24, 274-283. doi: 10.1634/stemcells.2005-0059

Meyer, J. S., Tullis, G., Pierret, C., Spears, K. M., Morrison, J. A., & Kirk, M. D. (2009). Detection of calcium transients in embryonic stem cells and their differentiated progeny. Cell Mol. Neurobiol, 29, 1191-1203. doi: 10.1007/s10571-009-9413-3

Mitalipov, S., & Wolf, D. (2009). Totipotency, pluripotency and nuclear reprogramming. In U. Martin (Ed.), Engineering of stem cells (pp.185-199). Berlin: Springer-Verlag Berlin. doi: 10.1007/10_2008_45

Mittal, N., & Voldman, J. (2011). Nonmitogenic survival-enhancing autocrine factors including cyclophilin A contribute to density-dependent mouse embryonic stem cell growth. Stem Cell Res., 6, 168-176. doi: 10.1016/j.scr.2010.10.001

Nichols, J., Zevnik, B., Anastassiadis, K., Niwa, H., Klewe-Nebenius, D., Chambers I, ..., Smith, A. (1998). Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 95, 379-391. doi: 10.1016/S0092-8674(00)81769-9

Nonaka, J., Yoshikawa, M., Ouji, Y., Matsuda, R., Nishimura, F., Yamada, S., …, Sakaki, T. (2008). CoCl(2) inhibits neural differentiation of retinoic acid-treated embryoid bodies. J. Biosci. Bioeng., 106, 141-147. doi: 10.1263/jbb.106.141

Okabe, S., Forsberg-Nilsson, K., Spiro, A. C., Segal, M., & McKay, R. D. (1996). Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mechanisms of Development, 59, 89-102. doi: 10.1016/0925-4773(96)00572-2

Okada, Y., Shimazaki, T., Sobue, G., & Okano, H. (2004). Retinoic-acid-concentration-dependent acquisition of neural cell identity during in vitro differentiation of mouse embryonic stem cells. Dev. Biol., 275, 124-142. doi: 10.1016/j.ydbio.2004.07.038

Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature, 448, 313-317. doi: 10.1038/nature05934

Pera, M. F. (2010). Defining pluripotency. Nat. Methods, 7, 885-887.

Perrier, A. L., Tabar, V., Barberi, T., Rubio, M. E., Bruses, J., Topf, N., …, Studer, L. (2004). Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA, 101, 12543-12548. doi: 10.1073/pnas.0404700101

Pierret, C., Morrison, J. A., Rath, P., Zigler, R. E., Engel, L. A, Fairchild, C. L., …, Kirk, M. D. (2010). Developmental cues and persistent neurogenic potential within an in vitro neural niche. BMC Dev. Biol., 10, 5. doi: 10.1186/1471-213X-10-5

Pierret, C., Spears, K., Morrison, J. A., Maruniak, J. A., Katz, M. L., & Kirk, M. D. (2007). Elements of a neural stem cell niche derived from embryonic stem cells. Stem Cells Dev., 16, 1017-1026. doi: 10.1089/scd.2007.0012

Seong, E., Saunders, T. L., Stewart, C. L., & Burmeister, M. (2004). To knockout in 129 or in C57BL/6: that is the question. Trends in Genetics, 20, 59-62. doi: 10.1016/j.tig.2003.12.006

Shao, H., Wei, Z., Wang, L., Wen, L., Duan, B., Manga, L., & Boua, S. (2007). Generation and characterization of mouse parthenogenetic embryonic stem cells containing genomes from non-growing and fully grown oocytes. Cell Biology International, 31, 1336-1344. doi: 10.1016/j.cellbi.2007.05.008

Solter, D. (2006). From teratocarcinomas to embryonic stem cells and beyond: A history of embryonic stem cell research. Nat. Rev. Genet., 7, 319-327. doi: 10.1038/nrg1827

Spears, K. (2011). Immunogenic properties of neuralized embryonic stem cells in a model of allogeneic intracranial transplantation. Columbia, MO: University of Missouri.

Srivastava, A. S., Malhotra, R., Sharp, J., & Berggren, T. (2008). Potentials of ES cell therapy in neurodegenerative diseases. Curr. Pharm. Des., 14, 3873-3879.

Stevens, L. C., & Little, C. C. (1954). Spontaneous testicular teratomas in an inbred strain of mice. Proc. Natl. Acad. Sci. USA, 40, 1080-1087. doi: 10.1073/pnas.40.11.1080

Strubing, C., Ahnert-Hilger, G., Shan, J., Wiedenmann, B., Hescheler, J., & Wobus, A. M. (1995). Differentiation of pluripotent embryonic stem cells into the neuronal lineage in vitro gives rise to mature inhibitory and excitatory neurons. Mechanisms of Development, 53, 275-287. doi: 10.1016/0925-4773(95)00446-8

Tabibnia, G., Cooke, B. M., & Breedlove, S. M. (1999). Sex difference and laterality in the volume of mouse dentate gyrus granule cell layer. Brain Research, 827, 41-45. doi: 10.1016/S0006-8993(99)01262-7

Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663-676. doi: 10.1016/j.cell.2006.07.024

Takahashi, K., Tanabe, K., Ohnuki, M., Narita, M., Ichisaka T, Tomoda, K., & Yamanaka, S. (2007). Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 131, 861-872. doi: 10.1016/j.cell.2007.11.019

Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. Science, 282, 1145-1147. doi: 10.1126/science.282.5391.1145

Ueno, M., Matsumura, M., Watanabe, K., Nakamura, T., Osakada, F., Takahashi, M, …, Sasai, Y. (2006). Neural conversion of ES cells by an inductive activity on human amniotic membrane matrix. Proc. Natl. Acad. Sci. USA, 103, 9554-9559. doi: 10.1073/pnas.0600104103

Van Ooyen, A. (2011). Using theoretical models to analyse neural development. Nat. Rev. Neurosci., 12, 311-326. doi :10.1038/nrn3076

Wahlsten, D., Metten, P., & Crabbe, J. C. (2003). Survey of 21 inbred mouse strains in two laboratories reveals that BTBR T/+ tf/tf has severely reduced hippocampal commissure and absent corpus callosum. Brain Research, 971, 47-54. doi: 10.1016/S0006-8993(03)02354-0

Walker, A. S., Goings, G. E., Kim, Y., Miller, R. J., Chenn, A., & Szele, F. G. (2010). Nestin reporter transgene labels multiple central nervous system precursor cells. Neural Plast., 2010, 894374.

Wang, Z., Wang, H., Wu, J., Zhu, D., Zhang, X., Ou, L., …, Lou, Y. (2009). Enhanced co-expression of beta-tubulin III and choline acetyltransferase in neurons from mouse embryonic stem cells promoted by icaritin in an estrogen receptor-independent manner. Chem. Biol. Interact., 179, 375-385.

Ware, C. B., Siverts, L. A., Nelson, A. M., Morton, J. F., & Ladiges, W. C. (2003). Utility of a C57BL/6 ES line versus 129 ES lines for targeted mutations in mice. Transgenic Research, 12, 743-746.

Wobus, A. M., Grosse, R., & Schoneich, J. (1988). Specific effects of nerve growth factor on the differentiation pattern of mouse embryonic stem cells in vitro. Biomedica Biochimica Acta, 47, 965-973.

Xu, H., Fan, X., Wu, X., Tang, J., & Yang, H. (2005). Neural precursor cells differentiated from mouse embryonic stem cells relieve symptomatic motor behavior in a rat model of Parkinson’s disease. Biochem. Biophys. Res. Commun., 326, 115-122.

Xu, J., Wang, H., Liang, T., Cai, X., Rao, X., Huang, Z., & Sheng, G. (2011). Retinoic acid promotes neural conversion of mouse embryonic stem cells in adherent monoculture. Mol. Biol. Rep..

Yamanaka, S., Li, J., Kania, G., Elliott, S., Wersto, R. P., Eyk, J. V., …, Boheler, K. R. (2008). Pluripotency of embryonic stem cells. Cell and Tissue Research, 331, 5-22.

Zhang, S. C., Wernig, M., Duncan, I. D., Brustle, O., & Thomson, J. A. (2001). In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol, 19, 1129-1133.

Zubler, F., & Douglas, R. (2009). A framework for modeling the growth and development of neurons and networks. Front Comput. Neurosci., 3, 25.




DOI: http://dx.doi.org/10.3968/j.ans.1715787020130604.2838

DOI (PDF): http://dx.doi.org/10.3968/g5382

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

How to do online submission to another Journal?

If you have already registered in Journal A, then how can you submit another article to Journal B? It takes two steps to make it happen:

1. Register yourself in Journal B as an Author

Find the journal you want to submit to in CATEGORIES, click on “VIEW JOURNAL”, “Online Submissions”, “GO TO LOGIN” and “Edit My Profile”. Check “Author” on the “Edit Profile” page, then “Save”.

2. Submission

Go to “User Home”, and click on “Author” under the name of Journal B. You may start a New Submission by clicking on “CLICK HERE”.

We only use the following emails to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]; [email protected]; [email protected]
[email protected];[email protected]

 Articles published in Advances in Natural Science are licensed under Creative Commons Attribution 4.0 (CC-BY).

 ADVANCES IN NATURAL SCIENCE Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138
Website: Http://www.cscanada.net; Http://www.cscanada.org
E-mail:[email protected]; [email protected]

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures