Comparison of Optimality Criteria of Reduced Models for Response Surface Designs with Restricted Randomization

Angela U. Chukwu, Yisa Yakubu

Abstract


In this work, $D-$, $G-$, and $A-$ efficiencies and the scaled average prediction variance, $IV$ criterion, are computed and compared for second-order split-plot central composite design. These design optimality criteria are evaluated across the set of reduced split-plot central composite design models for three design variables under various ratios of the variance components (or degrees of correlation $d$). It was observed that $D$, $A$, $G$, and $IV$ for these models strongly depend on the values of $d$; they are robust to changes in the interaction terms and vary dramatically with the number of, and changes in the squared terms.

Full Text:

PDF


DOI: http://dx.doi.org/10.3968/j.pam.1925252820120402.1517

DOI (PDF): http://dx.doi.org/10.3968/g3093

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the "CATEGORIES", or "JOURNALS A-Z" on the right side of the "HOME".


We only use the follwoing mailboxes to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]
[email protected]

 Articles published in Progress in Applied Mathematics are licensed under Creative Commons Attribution 4.0 (CC-BY).

 ROGRESS IN APPLIED MATHEMATICS Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:[email protected] [email protected] [email protected]

Copyright © 2010 Canadian Research & Development Center of Sciences and Cultures