Toeplitz Matrix Method and Volterra-Hammerstien Integral Equation with a Generalized Singular Kernel
Abstract
Keywords
Full Text:
PDFReferences
[1] Abdou, M. A., & Salama, F. A. (2004). Volterra-Fredholm integral equation of the first kind and spectral relationships. Appl. Math. Comput., 153, 141-153.
[2] EL-Borai, M. M., Abdou, M. A., & EL-Kojok, M. M. (2006). On a discussion of nonlinear integral equation of type volterra-fredholm. J. KSIAM, 10(2), 59-83.
[3] Maleknejad, K., & Sohrabi, S. (2008). Legendre polynomial solution of nonlinear volterra–fredholm integral equations. IUST IJES, 19(5-2), 49-52
[4] Ezzati, R. & Najufalizadeh, S. (2011). Numerical solution of nonlinear Volterra-Fredholm integral equation by using Chebyshev polynomials. Mathematical Sciences, 5(1), 1-12.
[5] Ahmed, S. S. (2011). Numerical solution for Volterra-Fredholm integral equation of the second kind by using least squares technique. Iraqi Journal of Science, 52(4), 504-512.
[6] J. Ahmadi Shali, A. A. Joderi Akbarfam, G. Ebadi, (2012). Approximate Solution of Nonlinear Volterra–Fredholm integral equation. International Journal of Nonlinear Science, 14(4), 425-433.
[7] Abdou, M. A., Mohamed, K. I., & Ismail, A. S. (2003). On the numerical solutions of fredholm–volterra integral equation. Appl. Math. Comput., 146, 713-728
[8] Abdou,M. El-Borai,A. M. & Kojak, M. M. (2009). Toeplitz matrix method and nonlinear integral equation of hammerstein type. J. Comp. Appl. Math., 223, 765-776.
[9] Atkinson, K. E. (1997). The numerical solution of integral equation of the second kind. Cambridge.
[10] Delves, L. M., & Mohamed, J. L. (1985). Computational methods for integral equations.
DOI: http://dx.doi.org/10.3968/j.pam.1925252820130602.2593
DOI (PDF): http://dx.doi.org/10.3968/g5264
Refbacks
- There are currently no refbacks.
Copyright (c)
Reminder
If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the "CATEGORIES", or "JOURNALS A-Z" on the right side of the "HOME".
We only use the follwoing mailboxes to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]
[email protected]
Articles published in Progress in Applied Mathematics are licensed under Creative Commons Attribution 4.0 (CC-BY).
ROGRESS IN APPLIED MATHEMATICS Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:[email protected] [email protected] [email protected]
Copyright © 2010 Canadian Research & Development Center of Sciences and Cultures