Hybrid Function Projective Synchronization of Chaotic Systems with Fully Unknown Parameters

Zhanguo LI, Wei XU

Abstract


To compensate for projective synchronization (PS) and function projective synchronization (FPS), we propose a hybrid function projective synchronization (HFPS), which applies the different time-varying functions as the synchronization scaling factors. Based on the adaptive control method, we design a simple controller and a set of update laws of unknown parameters to carry out HFPS in identical and different chaotic systems with fully unknown parameters. According to the Lyapunov stability theorem and the Barbalat lemma, we prove the asymptotical stability of the error dynamical system at the origin. Then two numerical examples are given to validate the feasibility and effectiveness of the developed procedure in this paper. Key Words: Hybrid function projective synchronization; Lyapunov stability theorem; Adaptive control; Unknown parameters

Full Text:

PDF


DOI: http://dx.doi.org/10.3968/j.sms.1923845220120201.013

DOI (PDF): http://dx.doi.org/10.3968/g1553

Refbacks

  • There are currently no refbacks.


Copyright (c)




Share us to:   


Reminder

If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".


We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]; [email protected]; [email protected]

 Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).

 STUDIES IN MATHEMATICAL SCIENCES Editorial Office

Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.

Telephone: 1-514-558 6138

Http://www.cscanada.net
Http://www.cscanada.org
E-mail:[email protected]

Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures