Some Properties of the Generalized Stuttering Poisson Distribution and Its Applications
Abstract
Based on the probability generating function of stuttering Poisson distribution (SPD), this paper considers some equivalent propositions of SPD. From this, we show that some distributions in the application of non-life insurance actuarial science are SPD, such as negative binomial distribution, compound Poisson distribution etc.. By weakening condition of equivalent propositions of SPD, we define the generalized SPD and prove that any non-negative discrete random variable X with P{X = 0} > 0.5 obey generalized SPD. Then, we discuss the waiting time distribution of generalized stuttering Poisson process. We consider cumulant estimation of generalized SPD's parameters. As an application, we use SPD with four parameters (4th SPD) to fit auto insurance claim data. The fitting results show that 4th SPD is more accurate than negative binomial and Poisson distribution.
Keywords
Full Text:
PDFDOI: http://dx.doi.org/10.3968/j.sms.1923845220120501.Z0697
DOI (PDF): http://dx.doi.org/10.3968/g2770
Refbacks
- There are currently no refbacks.
Copyright (c)
Reminder
If you have already registered in Journal A and plan to submit article(s) to Journal B, please click the CATEGORIES, or JOURNALS A-Z on the right side of the "HOME".
We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]; [email protected]; [email protected]
Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).
STUDIES IN MATHEMATICAL SCIENCES Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:[email protected]
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures