Finite Volume Method for Solving a Modified 3-D 3-Phase Black-Oil Hydrocarbon Secondary Migration Model, and Its Application to the Kuqa Depression of the Tarim Basin in Western China
Abstract
By using a finite volume method as a solver, a modified 3-D 3-phase (water, oil, gas) black-oil model for modeling hydrocarbon (HC) secondary migration in the context of basin modeling is presented in this paper. The model predicts the quantity and distribution of HC accumulation in space and time. The black-oil model used in basin modeling is more complex and more difficult to model than that in reservoir simulations, as the model includes variable simulation ranges, very long simulation times, initial conditions, natural sources and sinks, and reservoir gridcells. In the proposed finite volume formulation, the gridding of variable 3-D geological volumes is performed using perpendicular bisection (PEBI) gridcells, which makes the discretization and subsequent implementation of 3-phase flow equations much easier than when using hexahedral or tetrahedral gridcells. The stability and convergence of the solutions have been improved by using finite volumes with PEBI gridcells and the fully implicit formulation. A detailed case study in the Kuqa Depression of the Tarim Basin in western China shows that the simulation results and predictions agree well with field evaluations.
Key words: Basin modeling; Secondary migration; Black-oil model; Finite volume method; PEBI gridding; Kuqa Depression
Keywords
Full Text:
PDFReferences
[1] Shi, G. R., Li, H. F., Wang, S. M., Guo, Q. L., Shi, R. M., & Li, P. (1989). 1-D basin modeling system BAS1. Petroleum Exploration and Development, 16(6), 1-11. (in Chinese with English abstract)
[2] Welte, D. H., & Yükler, M. A. (1981). Petroleum origin and accumulation in basin evolution — A quantitative model. AAPG Bulletin, 65(8), 1387-1396.
[3] Yükler, M. A., Cornford, C., & Welte, D. H. (1978). One-dimensional model to simulate geologic, hydrodynamic and thermodynamic development of a sedimentary basin. Geologische Rundschau, 67(3), 960-979.
[4] Noureddine, Y., Schaefer, R. S., & Littke, R. (2001). Petroleum generation and accumulation in the Berkine basin, eastern Algeria. AAPG Bulletin, 85(8), 1439-1467.
[5] Shi, G. R., Guo, Q. L., Mi, S. Y., Zhang, Q. C., & Yang Q. L. (1996). Basin integrated modeling system BASIMS. Acta Petrolei Sinica, 17(1), 1-9. (in Chinese with English abstract)
[6] Ungerer P., Burrus, J., Doligez, B., Chenet, P. Y., & Bessis F. (1990). Basin evaluation by integrated two-dimensional modeling of heat transfer, fluid flow, hydrocarbon generation, and migration. AAPG Bulletin, 74(3), 309-335.
[7] Fugl, A. W., & Meshri I. D. (1998). 3-D modeling for migration and accumulation of hydrocarbons in the Danish Central Graben, North Sea. AAPG Bulletin, 82(3), 1916.
[8] Gonçalvès, J., Violette, S., Guillocheau, F., Robin, C., Pagel, M., Bruel, D., de Marsily, G., & Ledoux, E. (2004). Contribution of a three-dimensional regional scale basin model to the study of the past fluid flow evolution and the present hydrology of the Paris basin, France. Basin Research, 16(4), 569-586.
[9] Nielsen, S. B., & Gallagher, K. (1999). Efficient sampling of 3-D basin modelling scenarios. AAPG Bulletin, 83(8), 1330.
[10] Schneider, F., & Wolf, S. (2000). Quantitative HC potential evaluation using 3D basin modeling: application to Franklin structure, Central Grabben, North Sea, U. K. Marine and Petroleum Geology, 17(7), 841-856.
[11] Hantschel, T., & Kauerauf, A. I. (2009). Fundamentals of Basin Modeling and Petroleum Systems Modeling. Berlin, Germany: Springer-Verlag.
[12] Mello, U. T., Rodrigues, J. R. P., & Rossa, A. L. (2009). A control-volume finite-element method for three-dimensional multiphase basin modeling. Marine and Petroleum Geology, 26(4), 504-518.
[13] England, W. A., Mackenzie, A. S., Mann, D. M., & Quigley, T. M. (1987). The Movement and entrapment of petroleum fluids in the subsurface. J. the Geological Society (London), 144(2), 327-347.
[14] Thomas, C. W. (1982). Principles of Hydrocarbon Reservoir Simulation. Boston, USA: International Human Resources Development Corporation.
[15] Shi, G. R. (2008). Basin modeling in the Kuqa Depression of the Tarim Basin (Western China): A fully temperature-dependent model of overpressure history. Mathematical Geosciences, 40(1), 47-62.
[16] Smith, J. E. (1971). The dynamics of shale compaction and evolution in pore-fluid pressures. Mathematical Geology. 3(3), 239-263.
[17] Barcilon, V., & Richter, F. M. (1986). Non-linear waves in compacting media. J. Fluid Mechanics, 164, 429-448.
[18] Fowler, A. C., & Yang, X. S. (2002). Loading and unloading of sedimentary basins: the effect of rheological hysteresis. J. Geophysical Research-Solid Earth, 107(B4, 2058), doi: 10.1029/2001JB000389.
[19] Lerche, I. (1990). Basin Analysis Quantitative Methods, Volume 1. San Diego, CA, USA: Academic Press Inc.
[20] Matthäi, S. K., Aydin, A., Pollard, D. D., & Roberts, S. (1998). Numerical simulation of deviation from radial drawdown in a faulted sandstone reservoir with joints and zones of deformation bands. In Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs, Geol. Soc. Spec. Publ. 147 (eds. G. Jones, Q. J. Fisher, R. J. Knipe), pp. 157-191. London, UK: Elsevier.
[21] Taylor, W. L., Pollard, D. D., & Aydin A. (1999). Fluid flow in discrete joint sets: field observations and numerical simulations. J. Geophysical Research-Solid Earth, 104(B12), 28983-29006.
[22] Taylor, W. L., & Pollard, D. D. (2000). Estimation of in situ permeability of deformation bands in porous sandstone, Valley of Fire, Nevada. Water Resources Research, 36(9), 2595-2606.
[23] Jourde, H., Flodin, E. A., Aydin, A., Durlofsky, L. J., & Wen, X. H. (2002). Computing permeability of fault zones in eolian sandstone from outcrop measurements. AAPG Bulletin, 86(7), 1187-1200.
[24] Shipton, Z. K., Evans, J. P., Robeson, K. R., Forster, C. B., & Snelgrove S. (2002). Structural heterogeneity and permeability in faulted eolian sandstone, implications for subsurface modeling of faults. AAPG Bulletin, 86(5), 863-883.
[25] Forsyth, P. A. (1989). A control volume finite element method for local mesh refinement. SPE of AIME, 18415, 85-96.
[26] Heinemann, Z. E., Brand, C., Munca, M., & Chen, Y. M. (1989). Modeling reservoir geometry with irregular grids. SPE of AIME, 18412, 37-54.
[27] Mishev, I. D. (1998). Finite volume methods on Voronoi meshes. Numerical Methods for Partial Differential Equations, 14(2), 193-212.
[28] Rozon, B. J. (1989). A generalized finite volume discretization method for reservoir simulation. SPE of AIME, 18414, 71-84.
[29] Bertiger, W. I., & Kelsey, F. J. (1985). Inexact adaptive Newton methods. SPE of AIME, 13501, 49-60.
[30] Vinsome, P. K. W. (1976). Orthomin, an iterative method for solving sparse sets of simultaneous linear equations. SPE of AIME, 5729, 149-159.
[31] Aziz, K., & Settari, A. (2002). Petroleum Reservoir Simulation. Calgary, Canada: Blitzprint limited.
[32] Shi, G. R., Zhou, X. X., Zhang, G. Y., Shi, X. F., & Li, H. H. (2004). The use of artificial neural network analysis and multiple regression for trap quality evaluation: a case study of the Northern Kuqa Depression of Tarim Basin in western China. Marine and Petroleum Geology, 21(3), 411-420.
[33] Shi, G. R., Zhang, Q. C., Yang, X. S., & Mi, S. Y. (2010). Oil and gas assessment of the Kuqa Depression of Tarim Basin in western China by simple fluid flow models of primary and secondary migrations of hydrocarbons. J. Petroleum Science and Engineering, 75(1-2), 77-90.
[34] Ungerer, P., Bessis, F., Chénet, P. Y., Durand, Nogaret, B., E., Chiarelli, A., Oudin, J. L., & Perrin, J. F. (1984). Geological and geochemical models in oil exploration; principles and practical examples. In Petroleum Geochemistry and Basin Evaluation, AAPG Bulletin, Memoir 35 (eds. G. Demaison and R. J. Murris), pp. 53-77.
[35] Lerche, I., Yarzab, R. F., & Kendall, C. G. ST. C. (1984). Determination of paleoheat flux from vitrinite reflectance data. AAPG Bulletin, 68(11), 1704-1717.
[36] Lerche, I. (1988). Inversion of multiple thermal indicators, quantitative methods of determining paleoheat flux and geological parameters. I. theoretical development for paleoheat flux. Mathematical Geology, 20(1), 1-36.
[37] Shi, G. R. (2009). A simplified dissolution-precipitation model of the smectite to illite transformation and its application. J. Geophysical Research-Solid Earth, 114(B10205), 13 PP., doi: 10.1029/2009JB006406.
[38] Pepper, A. S., & Corv, P. J. (1995). Simple kinetic models of petroleum formation. Part I, Oil and gas generation from kerogen. Marine and Petroleum Geology, 12(1995), 291-319.
[39] Pepper, A. S., & Dodd, T. A. (1995). Simple kinetic models of petroleum formation. Part Ⅱ, Oil-gas cracking. Marine and Petroleum Geology, 12(3), 321-340.
[40] Nakayama, K. (1987). Hydrocarbon-expulsion model and its application to Niigata area, Japan. AAPG Bulletin, 71(7), 810-821.
[41] Okui, A., & Waples, D. W. (1993). Relative permeability and hydrocarbon expulsion from source rocks. In Basin Modeling: Advances and Applications (eds. A. G. Doré et al.), pp. 293-301. Amsterdam, Holland: Elsevier.
[42] Okui, A., Siebert, R. M., & Matsubayashi, H. (1998). Simulation of oil expulsion by 1-D and 2-D basin modeling — saturation threshold and relative permeabilities of source rock. In Basin Modelling: Practice and Progress, Geol. Soc. Spec. Publ. 141 (eds. S. J. Düppenbecker and J. E. Iliffe), pp. 45-72. London, UK: Elsevier.
[43] Özkaya, I. (1991). Computer simulation of primary oil migration in Kuwait. J. Petroleum Geology, 14(1), 37-48.
[44] Pepper, A. S., & Corv, P. J. (1995). Simple kinetic models of petroleum formation. Part Ⅲ, Modelling an open system. Marine and Petroleum Geology, 12(4), 417-452.
[45] Li, D. S., & Li, D. W. (2003). Tectonic Types of Oil and Gas Basins in China, second ed. Beijing, China: Petroleum Industry Press.
[46] Zhou, X. X., Zhang, G. Y., Li, H. H., Wang, H. J., & Jia, J. H. (2002). Factors of Pool-forming of the Kuqa Petroleum System in the Tarim Basin. Beijing, China: Petroleum Industry Press. (in Chinese)
DOI: http://dx.doi.org/10.3968/j.aped.1925543820110201.556
Refbacks
- There are currently no refbacks.
Copyright (c)
Reminder
- How to do online submission to another Journal?
- If you have already registered in Journal A, then how can you submit another article to Journal B? It takes two steps to make it happen:
1. Register yourself in Journal B as an Author
- Find the journal you want to submit to in CATEGORIES, click on “VIEW JOURNAL”, “Online Submissions”, “GO TO LOGIN” and “Edit My Profile”. Check “Author” on the “Edit Profile” page, then “Save”.
2. Submission
- Go to “User Home”, and click on “Author” under the name of Journal B. You may start a New Submission by clicking on “CLICK HERE”.
We only use three mailboxes as follows to deal with issues about paper acceptance, payment and submission of electronic versions of our journals to databases:
[email protected]; [email protected]; [email protected]
Articles published in Advances in Petroleum Exploration and Development are licensed under Creative Commons Attribution 4.0 (CC-BY).
ADVANCES IN PETROLEUM EXPLORATION AND DEVELOPMENT Editorial Office
Address:1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Website: Http://www.cscanada.net
Http://www.cscanada.org
E-mail:[email protected]; [email protected]
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures