Closed Form Solution of a Symmetric Competitive System of Rational Difference Equations
Abstract
In this paper, we will study a symmetric competitive three-dimensional system of difference equations in the form:
$$ x_{n+1} = \frac {x_n}{z_n y_n}~ \& ~y_{n+1} = \frac {y_n}{x_n z_n}~ \& ~z_{n+1} = \frac {z_n}{y_n x_n}
\eqno{(1)} $$ where the initial values $x_0$, $y_0$, and $z_0$ are nonzero real numbers. Moreover, we have studied periodicity of solutions for this system. Finally we will give some numerical examples as applications.
$$ x_{n+1} = \frac {x_n}{z_n y_n}~ \& ~y_{n+1} = \frac {y_n}{x_n z_n}~ \& ~z_{n+1} = \frac {z_n}{y_n x_n}
\eqno{(1)} $$ where the initial values $x_0$, $y_0$, and $z_0$ are nonzero real numbers. Moreover, we have studied periodicity of solutions for this system. Finally we will give some numerical examples as applications.
Keywords
Difference equation; Solutions; Convergence; Periodicity; Competitive
Full Text:
PDFDOI: http://dx.doi.org/10.3968/j.sms.1923845220120501.1133
DOI (PDF): http://dx.doi.org/10.3968/g2887
Refbacks
- There are currently no refbacks.
Copyright (c)
Please send your manuscripts to [email protected],or [email protected] for consideration. We look forward to receiving your work.
Articles published in Studies in Mathematical Sciences are licensed under Creative Commons Attribution 4.0 (CC-BY).
STUDIES IN MATHEMATICAL SCIENCES Editorial Office
Address: 1055 Rue Lucien-L'Allier, Unit #772, Montreal, QC H3G 3C4, Canada.
Telephone: 1-514-558 6138
Http://www.cscanada.net
Http://www.cscanada.org
E-mail:[email protected]
Copyright © 2010 Canadian Research & Development Centre of Sciences and Cultures